High pressure improves optical fibres

Created October 26, 2020
Applications and Research

Optical fibre data transmission can be significantly improved by producing the fibres, made of silica glass, under high pressure, researchers from Japan and the US report in the journal npj Computational Materials.

Using computer simulations, researchers at Hokkaido University, The Pennsylvania State University and their industry collaborators have theoretically shown that signal loss from silica glass fibres can be reduced by more than 50%, which could dramatically extend the distance data can be transmitted without the need for amplification.

“Improvements in silica glass, the most important material for optical communication, have stalled in recent years due to lack of understanding of the material on the atomic level,” says Associate Professor Madoka Ono of Hokkaido University’s Research Institute of Electronic Science (RIES). “Our findings can now help guide future physical experiments and production processes, though it will be technically challenging.”

Ono and her collaborators used multiple computational methods to predict what happens to the atomic structure of silica glass under high temperature and high pressure. They found large voids between silica atoms form when the glass is heated up and then cooled down, which is called quenching, under low pressure. But when this process occurs under 4 gigapascals (GPa), most of the large voids disappear and the glass takes on a much more uniform lattice structure.

Specifically, the models show that the glass goes under a physical transformation, and smaller rings of atoms are eliminated or “pruned” allowing larger rings to join more closely together. This helps to reduce the number of large voids and the average size of voids, which cause light scattering, and decrease signal loss by more than 50 percent.

The researchers suspect even greater improvements can be achieved using a slower cooling rate at higher pressure. The process could also be explored for other types of inorganic glass with similar structures. However, actually making glass fibres under such high pressures at an industrial scale is very difficult.

“Now that we know the ideal pressure, we hope this research will help spur the development of high-pressure manufacturing devices that can produce this ultra-transparent silica glass,” Ono says.

Madoka Ono is part of the Laboratory of Nanostructured Functional Materials, RIES at Hokkaido University. Her research focuses on the properties of non-organic and silica glass by both laboratory experiments and computational analyses.

For more information, visit www.nature.com/npjcompumats

high-pressure-improves-optical-fibres

This article was written
by Peter Dykes

Peter Dykes is a independent telecoms and technology journalist who has over that last 30 years written for a wide range of B2B publications and companies. A former BT engineer, he specialises in networks and associated support systems. He is currently Editor of Optical Connections.