World first soliton manipulation on silicon chip offers potential to speed up photonic comms devices and infrastructure

Created July 4, 2019
Applications and Research

A collaboration between the Sydney Nano Institute and Singapore University of Technology and Design (SUTD) has for the first time manipulated a light wave, or photonic information, on a silicon chip that retains its overall ‘shape’.

The Sydney-Singapore team has for the first time observed ‘soliton’ dynamics on an Ultra-Silicon-Rich Nitride (USRN) device fabricated in Singapore using state-of-the-art optical characterisation tools at Sydney Nano.

The team say this foundational work, published this week in Laser & Photonics Reviews, is important because most communications infrastructure still relies on silicon-based devices for propagation and reception of information. Manipulating solitons on-chip could potentially allow for the speed up of photonic communications devices and infrastructure.

Ezgi Sahin, a PhD student at SUTD (pictured) conducted the experiments with Dr Andrea Blanco Redondo at the University of Sydney.

“The observation of complex soliton dynamics paves the way to a wide range of applications, beyond pulse compression, for on-chip optical signal processing,” Ms Sahin said. “I’m happy to be a part of this great partnership between the two institutions with deep collaboration across theory, device fabrication and measurement.”

Co-author of the study and Director of Sydney Nano, Professor Ben Eggleton, said, “This represents a major breakthrough for the field of soliton physics and is of fundamental technological importance.

“Solitons of this nature – so-called Bragg solitons – were first observed about 20 years ago in optical fibres but have not been reported on a chip because the standard silicon material upon which chips are based constrains the propagation. This demonstration, which is based on a slightly modified version of silicon that avoids these constraints, opens the field for an entirely new paradigm for manipulating light on a chip.”

Prof. Ben Eggleton and Prof. Dawn Tan

Professor Dawn Tan, a co-author of the paper at SUTD, said, “We were able to convincingly demonstrate Bragg soliton formation and fission because of the unique Bragg grating design and the Ultra-Silicon-Rich Nitride material platform we used. This platform prevents loss of information which has compromised previous demonstrations.”

Optical soliton waves have been studied since the 1980s in optical fibres and offer enormous promise for optical communication systems because they allow data to be sent over long distances without distortion. Bragg solitons, which derive their properties from Bragg gratings (periodic structures etched in to the silicon substrate), can be studied at the scale of chip technology where they can be harnessed for advanced signal processing.

The silicon-based nature of the Bragg grating device also ensures compatibility with Complementary Metal Oxide Semiconductor (CMOS) processing. The ability to reliably initiate soliton compression and fission allows ultrafast phenomena to be generated with longer pulses than previously required. The chip-scale miniaturisation also advances the speed of optical signal processes in applications necessitating compactness.

For more information, visit https://sydney.edu.au and www.sutd.edu.sg/

 

avatar

This article was written
by John Williamson

John Williamson is a freelance telecommunications, IT and military communications journalist. He has also written for national and international media, and been a telecoms advisor to the World Bank.