Low bend, low-loss waveguide opens way to downsize 3-D photonic circuits

Created April 16, 2018
Applications and Research

Pictured left: Scheme of writing compact PICs with low bend loss using a femtosecond laser. Credit: Science China Press.

Femtosecond laser direct writing is a promising technology for the fabrication of photonic integrated chips mainly due to its intrinsic capability of three-dimensional prototyping in transparent substrates. Currently, the difficulty in inducing large refractive index changes smoothly distributed in the laser-irradiated regions is the major obstacle for producing compact photonic integrated circuits (PICs).

Now researchers in China have proposed a solution to suppress the bend loss of the waveguide at small radii of curvatures by more than one order of magnitude, opening a new avenue to downsizing of 3-D photonic integrated circuits. Their work, titled “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” was published in Science China Physics, Mechanics & Astronomy.

PICs manufactured by mature photolithographic technologies are used in sensing, optical communications, optical signal processing and biophotonics. As an intrinsically planar fabrication technology, increasing the integration density in the photolithography mainly depends on reducing the sizes of individual components.

Alternatively, PICs of geometrically complex 3-D configurations can now be fabricated using femtosecond laser direct writing, which potentially provides high integration density and extreme flexibility in terms of integrated multifunctional systems such as optofluidics and optomechanics.

Currently, waveguides inscribed in fused silica glass have been demonstrated to support single-mode transmission with propagation losses as low as 0.1 dB/cm at 1550 nm wavelength. However, the typical refractive index increase induced in fused silica by femtosecond laser irradiation is on the order of ~10-4-~10-3, giving rise to large bending losses at small radii of curvatures. This has become a major obstacle for producing compact photonic devices with the 3-D waveguides written by femtosecond laser pulses.

Solution: laser direct writing
To solve this challenging problem, the researchers inscribed multiple modification tracks in fused silica by femtosecond laser direct writing, arranged into two arrays to form a pair of vertical modification walls on the two sides of the curved waveguide. The modification structures produce a strong localized densification of the material, as well as significantly enhanced structural stress in the guiding region.

As a result, the refractive index contrast of at the waveguide bend was substantially increased. By optimizing the geometrical parameters of the bend-loss-suppression walls (BLSWs), they successfully reduced the bend loss of curved waveguides with a bending radius of 15 mm from ~3 dB to ~0.3 dB.

Explore further here: 3-D laser printing of whispering-gallery-mode microcavities by ZhengMing Liu et al, Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses, Science China Physics, Mechanics & Astronomy (2018).

Matthew Peach

This article was written
by Matthew Peach

Matthew Peach is a freelance technology journalist specialising in photonics and communications. He has previously worked for several business-to-business publishers, editing a range of high-tech magazines and websites.